Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Hematol ; 91: 32-38.e6, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33075436

RESUMO

The generation of a functional erythrocyte from a committed progenitor requires significant changes in gene expression during hemoglobin accumulation, rapid cell division, and nuclear condensation. Congenital dyserythropoietic anemia type I (CDA-I) is an autosomal recessive disease that presents with erythroid hyperplasia in the bone marrow. Erythroblasts in patients with CDA-I are frequently binucleate and have chromatin bridging and defective chromatin condensation. CDA-1 is most commonly caused by mutations in Codanin-1 (CDAN1). The function of CDAN1 is poorly understood but it is thought to regulate histone incorporation into nascent DNA during cellular replication. The study of CDA-1 has been limited by the lack of in vitro models that recapitulate key features of the disease, and most studies on CDAN1 function have been done in nonerythroid cells. To model CDA-I we generated HUDEP2 mutant lines with deletion or mutation of R1042 of CDAN1, mirroring mutations found in CDA-1 patients. CDAN1 mutant cell lines had decreased viability and increased intercellular bridges and binucleate cells. Further, they had alterations in histone acetylation associated with prematurely elevated erythroid gene expression, including gamma globin. Together, these data imply a specific functional role for CDAN1, specifically R1042 on exon 24, in the regulation of DNA replication and organization during erythroid maturation. Most importantly, generation of models with specific patient mutations, such as R1042, will provide further mechanistic insights into CDA-I pathology.


Assuntos
Anemia Diseritropoética Congênita/genética , Células Eritroides/citologia , Eritropoese/genética , Glicoproteínas/genética , Proteínas Nucleares/genética , Acetilação , Anemia Diseritropoética Congênita/sangue , Sistemas CRISPR-Cas , Linhagem Celular , Núcleo Celular/ultraestrutura , Sobrevivência Celular , Cromatina/ultraestrutura , Células Eritroides/metabolismo , Eritropoese/fisiologia , Éxons/genética , Edição de Genes , Glicoproteínas/deficiência , Glicoproteínas/fisiologia , Código das Histonas , Humanos , Proteínas Nucleares/deficiência , Proteínas Nucleares/fisiologia , Fenótipo , Processamento de Proteína Pós-Traducional
2.
Virology ; 516: 246-257, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29425767

RESUMO

Viral pathogenesis results from changes in host cells due to virus usurpation of the host cell and the innate cellular responses to thwart infection. We measured global changes in protein expression and localization in HIV-1 infected T-cells using subcellular fractionation and the Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS) proteomic platform. Eight biological replicates were performed in two independent experimental series. In silico merging of both experiments identified 287 proteins with altered expression (p < .05) between control and infected cells- 172 in the cytoplasm, 84 in the membrane, and 31 in nuclei. 170 of the proteins are components of the NIH HIV interaction database. Multiple Reaction Monitoring and traditional immunoblotting validated the altered expression of several factors during infection. Numerous factors were found to affect HIV infection in gain- and loss-of-expression infection assays, including the intermediate filament vimentin which was found to be required for efficient infection.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , Proteínas/química , Linfócitos T/química , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Proteínas/genética , Proteínas/metabolismo , Proteômica , Linfócitos T/metabolismo , Linfócitos T/virologia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...